Додавання і віднімання векторів


Урок 1. Додавання векторів

Щоб додати два вектори, необхідно додати їх відповідні координати.

Урок 2. Віднімання векторів

 Щоб відняти два вектори, необхідно відняти їх відповідні координати.


Урок 3.  Множення вектора на число

Щоб перемножити вектор на число, необхідно кожну його координату перемножити на це число.

Урок 4. Додавання векторів: правило трикутника

 

 Урок 5. Віднімання векторів Правило трикутника


 Урок 6. Тренувальна вправа 1: Правило трикутника

 Дано два вектори. Побудувати геометрично їх суму і різницю за правилом трикутника


Урок 7. Дії над векторами: Правило паралелограма.

Правило паралелограма. Вектори будуємо з спільного початку, і добудовуємо на них паралелограм: вектор, побудований на одній діагоналі - є сумою, а на другій діагоналі є різницею даних векторів. 



Урок 8. Тренувальна вправа 2: Правило паралелограма.


 Урок 9 Множення вектора на число у геометричній формі


Урок 10 Тренувальна вправа 3: Виразити вектори.

Дано паралелограм АВСD. На його сторонах відкладено вектори АВ і АD. Виразити через них вектори АС, ВD і АО.

Урок 11. Тренувальна вправа 4 Знайти суму векторів.

 Дано паралелограм АВСD. На його діагоналях введено вектори АС і ВD. Знайти суму векторів АС і ВD.

Урок 12. Тренувальна вправа 5: Спростити векторний вираз.

1. Спростити векторний вираз АВ+ВС-2СА. (АВ, ВС, і СА - вектори).
2. Спростити векторний вираз АВ+ВС+СА. (АВ, ВС, і СА - вектори).

Урок 13. Тренувальна вправа 5: Довести векторну рівність.

АМ - медіана трикутника. Довести, що вектор, побудований на медіані, дорівнює півсумі векторів, побудованих на сторонах трикутника.


Немає коментарів:

Дописати коментар

Перевір себе